
Answering Complex Queries with Heterogeneous
Structured Knowledge Sources extracted from Text

Nikita Bhutani
University of Michigan, Ann Arbor

nbhutani@umich.edu

ABSTRACT
Finding precise answers to user-issued queries, often posed in nat-
ural language (NL), has long been an elusive goal of DB and NLP
researchers. Structured knowledge bases (KBs) have been widely
adopted for this task. However, the diversity and complexity of
queries are often limited by the inherent incompleteness of the KB.
Every new textual data source first has to be curated and the KB
can only retain information it is capable of representing. To ad-
dress these limitations, open knowledge-based question-answering
(KB-QA) is gaining popularity. These systems are powered by KBs
that attempt to retain all the information in the textual data source.

Intuitively, a KB-QA system that can support NL queries should
also be able to store the NL text with all its complexity and nu-
ance. To this end, open information extraction (OPEN-IE) has made
headway in identifying an array of tuple facts from NL text. How-
ever, existing methods still lose a great deal of contextual informa-
tion critical to answering complex queries. We propose to encode
knowledge in an nest-tuple format and describe a new OPEN-IE
technique, NESTIE, to preserve the contextual information of facts.
While such broad-coverage information paves the way to take KB-
QA to the next level, tapping into this vast knowledge requires care-
ful re-design of querying methods. Automatically extracted KBs
have massive loosely-defined schema, which makes them harder to
query with traditional pattern-matching methods adopted for man-
ually curated KBs and databases. We describe a novel schemaless,
online querying method, SOQ, that does not require the user query
to exactly match the facts in the open KB. Experiments show that
using our proposed extraction and querying techniques, a KB-QA
system can effectively answer user queries of varying complexities.

PVLDB Reference Format:
Nikita Bhutani. Answering Complex Queries with Heterogeneous Struc-
tured Knowledge Sources extracted from Text. PVLDB, 12(xxx): xxxx-
yyyy, 2019.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
Recent years have seen a shift in how people access information

online. Users now prefer to get precise answers to their queries

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

Swedes

object_type

y

river1638

established_on
loca1on_contains

Delaware

Delaware	colony
establishment_founder establishment

religious	group

object_type

Figure 1: Snippet from curated KB with query components
highlighted in green.

posed in natural language (NL) rather than a link to a document
containing the information:
Q1: What is the home of the Liverpool Football Club?

This has been made possible with question-answering (KB-QA)
systems which are powered by a structured knowledge database
(KB) [8, 2]. Curated manually or collaboratively from publicly
available information such as Wikipedia, the KB contain factual
information about real-world entities (e.g., Liverpool F.C., Anfield)
and their relations (e.g., ground) in well-structured schemas. A KB-
QA system finds precise answers to a user’s query by translating it
to a structured KB query. For query Q1, this is depicted with the
following query formulation and execution.

Q1
query−−−→〈Liverpool F.C., ground, ?x〉 execute−−−→〈Liverpool F.C., ground,

Anfield〉 answer−−−→ Anfield
The range and depth of NL queries that a KB-QA system can

support is limited by incompleteness of the KB and the difficulty of
query formulation. The incompleteness arises because every new
textual data source has to be curated and the KB can only contain
facts that can be expressed with a set of pre-defined relations. For-
mulating KB queries is challenging since several transformations
are required to match phrases in the NL query to schema elements
(e.g., ‘home of’→ground). Consider a complex NL query:
Q2: Which religious group settled near a river in 1638?

As illustrated in Figure 1, the information to answer the complex
query could be missing from the KB or encoded in such a com-
plex schema that it is hard to formulate a precise KB query that can
retrieve the correct answer. Open KBs have alleviated these two
limitations in KB-QA and reformed how information is stored and
retrieved in KBs. Open KBs attempt to retain all the information in
the textual data source. These are constructed using open informa-
tion extraction (OPEN-IE) techniques which automatically extract
tuple facts about an unbounded set of relations from the NL text.
Table 1 shows example facts extracted using OPEN-IE.

Since tuples are extracted automatically from NL text, their ar-
guments and relations are simply strings. They can, therefore, be

1

1

A few years later in 1638, some Swedish settlers established the
first permanent settlement in Delaware.
Tuples: 〈Swedish settlers; established; settlement in Delaware〉

〈Swedish settlers; established; settlement in 1638〉

2
Finns settled on the shores of Delaware in 1638.
Tuples: 〈Finns; settled; on the shores of Delaware〉

〈Finns; settled on the shores of Delaware; in 1638〉

Table 1: Example text snippets and extracted tuple facts.

used directly to answer NL queries by string matchings instead of
relation inference. However, the price paid is the tuple facts in
an open KB are neither canonicalized nor semantically grounded
like schema elements in a curated KB. Although synonymous, re-
lations like settled and established will co-exist. However, such
light-weight structuring of NL text is easy to derive (compared to
manual curation) and easy to query (compared to raw text).

Although open KBs put open-domain question answering within
reach, we are still far from supporting complex queries such as in
traditional databases. First, existing OPEN-IE methods lose contex-
tual information as they try to extract facts that are tuples of the
form t = 〈vh, r, vt〉 where vh and vt are strings possibly denoting
entities, and r is a string relation between them. This representation
cannot accommodate contextual information about facts such as
conditionals, attributions and temporal constraints. What is lost in
the extraction process, cannot be queried. One way to mitigate the
loss of information is to use a more expressive representation that
could capture complex relations and sentence constructions, while
still maintaining granularity in the information captured. We pro-
pose to extract facts as nest-tuples wherein vh and vt can be refer-
ences to other extracted tuples. We develop an OPEN-IE technique,
NESTIE, that learns to extract such nest-tuples given a small set of
hand-crafted extraction patterns and a textual entailment dataset.

As mentioned earlier, facts in open KBs are not canonicalized. A
same real-world fact can have multiple representations in the open
KB. Simply modeling a NL query into a pre-defined query format
that exactly matches a fact representation will result in low recall
of the KB-QA system. Consider a n-tuple query for Q2:

Q2
query−−−→ 〈?x, settled; in ?y; in 1638〉 ∧ 〈?y; is-a; river〉

The query will partially match tuples from example 2 in Table 1
which resemble the query specification. But it will not match tu-
ples from example 1. Traditionally, such heterogeneity is handled
by mining query transformations and semantically equivalent struc-
tures for expanding queries. This can quickly lead to combinato-
rial explosion of expansion possibilities, particularly for complex
queries. However, since the arguments and relations in open KB
facts are strings, it is easy to find matches for components of the
query. We propose a schemaless querying technique, SOQ, that in-
stead of matching the query specification as a whole, finds matches
for different query components and computes the answer by rea-
soning over the collective evidence.

To summarize, we make the following contributions:

• We propose a more expressive fact representation, nest-tuple,
to address the problems of loss of information and granular-
ity in OPEN-IE. We describe an OPEN-IE technique, NESTIE
for constructing open KBs. It learns broad-coverage domain-
independent extraction patterns using a small set of seed ex-
traction patterns and textual entailment dataset.

• We propose SOQ, an online and schemaless querying frame-
work that does not require the user to write precise, compli-
cated queries for accessing open KBs. We propose a novel

approach to match a complex query in parts rather than rely-
ing on exact pattern matching the whole query. SOQ is com-
pletely online and evaluates a query in two phases, namely,
evidence gathering and evidence aggregation.

• Using NESTIE and SOQ, we develop a KB-QA system that
can dynamically ingest new raw NL text into open KBs and
support diverse, open-domain, complex NL queries.

• We conduct experiments to demonstrate the effectiveness of
our techniques on different text corpora and query sets.

2. PRELIMINARIES AND OVERVIEW
Open Knowledge Base. An open knowledge base (KB) is a collec-
tion of n-tuple facts K = {V,E, L}, extracted from a text corpora
D by an OPEN-IE technique. V is a set of arguments and E is a set
of edges that are labeled by L. Each edge E represents a n-tuple
〈vh; r; vt1 , . . . vtn〉, where vh is the head argument and vti are tail
arguments in V , and r is a relation name in L.

Definition 1. (Nest-tuple): A nest-tuple is a type of n-tuple where
vh and vti can be references to other tuples.

Queries. A complex query Q is a DATALOG-like program, con-
sisting of a set of RRules. Each RRule is of the form:

Rh(args) : R1(args1), R2(args2)..., Rn(argsn)

where Rh is the head of the rule, and R1, .., Rn is the body of the
rule. Each Ri(argsi) is a relational atom that evaluates to true
when K contains the tuple described by arguments and the rela-
tion. Any variables in the atom bind to values in K. A complex
query can have multiple RRule but has a variable called query fo-
cus ?xQ. Values that bind to ?xQ form the answers to the query Q.
Our running example query Q2 from our running example can be
posed as a set of rules,

R1(?xQ,?y): settle(?xQ,?y) is a(?y,river) is a(?xQ,religious group)
R2(?xQ,?y,1638): R1(?xQ,?y),settle in(?xQ,1638),settle in(?y,1638)
R(?xQ): R2(?xQ,?y,1638)

The query does not have to specify how each relation atom must
be matched. For example, settle(?xQ,?y) can match settle(Finns,
shores of Delaware, in 1638) and settle by(Delaware, Swedes).

2.1 Extracting tuples from NL text
To design an open KB-QA system that can answer complex queries,

our first sub-task is to populate the open KB with automatically ex-
tracted facts, while retaining any contextual information. For this,
we must learn an open information extractor that given a sentence
can extract all possible n-tuple facts from the sentence. This prob-
lem has been previously addressed in [7]. The extractor is typically
built on a set of domain-independent templates.

Definition 2 (Template). A template maps a dependency parse-
tree pattern to a tuple representation. Arguments in the templates
are treated as a sequence of words to capture nominal modifiers.

We do not have access to a set of n-tuples to learn the templates.
One way of generating a seed set of n-tuples is to hand-write tem-
plates and run them over a textual corpus. More equivalent parse-
tree patterns for the hand-written templates can then be learned by
bootstrapping over a textual entailment dataset. Embodying these
ideas, we design an open information extractor, NESTIE. Figure 2
shows the system architecture of NESTIE. We describe how NESTIE
learns patterns and extracts n-tuple facts in Section 3.

2

Dataset

Seed	Templates

Pa.ern Representa2on

Tuple	Extrac2on

Bootstrapping

Syntac2c	paraphrases

Syntac2c	Pa.erns Asser2ons

Pa#ern	Learning

Fact	Extrac0on

Seed	Extrac0on

Statement Tuple	Extrac2on Tuple	Linking

Pa.ern	Learning

Pa.ern Representa2on

Figure 2: System Architecture of NESTIE.

2.2 Querying heterogeneous Open KB
OPEN-IE methods help construct broad-coverage open KBs that

are also heterogeneous. The heterogeneity makes it difficult to for-
mulate a precise query or expand a given query to match the differ-
ent fact representations. This necessitates more forgiving database
access modalities that can handle heterogeneity not only in the or-
dering of the arguments in tuple facts and vocabulary but also in the
structure of the tuples. One way to support complex queries over
open KBs is to break them down into sub-components and match
them with string matchings. For identifying sub-components, a
query graph G(Q) is constructed for a query Q.

Definition 3. (Query graph): Query graph G(Q) of a query is an
undirected, acyclic graph with query focus ?xQ as the root. The
vertices denote constants and variables (e.g., Delaware, ?y). The
edges denote relations (e.g., settled, is a) connecting the arguments.

A higher-arity relation is an auxiliary vertex (called CVT) with
edges to the relation and the arguments. The query graph can
also be annotated with semantic roles and lemmatized values of the
components. Figure 4 shows a query graph with sub-components.

Definition 4. (Sub-component): A sub-component of Q is a rela-
tion edge and all its incident vertices in the query graph G(Q). In
case of a CVT vertex, the sub-component includes all edges con-
nected to the vertex and their incident vertices.

We develop an online, schemaless querying framework SOQ (Fig-
ure 3) for supporting complex queries over open KBs. In an evi-
dence gathering phase, it retrieves tuples containing evidence for
the sub-components. In an evidence aggregation phase, the col-
lected evidence is aggregated to construct support sets.

Definition 5. (Support Set): A support set Ci(Q) is a collection
of support items where each item is a maximal match for a sub-
component of G(Q). An item comprises tuples from K. The argu-
ment in the support set that matches ?xQ is the answer.

Each support set contains an answer to the query. The answer is
derived by analyzing the components of the query and the support
set. We describe the details of SOQ in Section 4.

3. EXTRACTING TUPLES FROM NL TEXT
We wish to learn an open extractor for identifying nest-tuples

without any direct supervision, i.e. without relation-specific, hand-
crafted extraction patterns or domain-specific knowledge engineer-
ing. To achieve this, we have to learn extraction patterns that can
map the many ways of expressing complex relations in the text to

Input	Query

Query	Graph

Evidence	Aggrega5on

Answer	Extrac5on

Evidence	Gathering

Answer

Figure 3: Overview of SOQ schemaless querying.

CVT	

se#le

head

rel ct:in

1638
?y

ct:near

religious	group

?xq

	arg,	tail

	agent,	head

verb,	rel 4me,	tail2

river
	arg,	tail

is-a

is-a
loc

Figure 4: Example query graph and its sub-components

corresponding nest-tuple representations. In practice, it is infea-
sible to simply enumerate all different extraction patterns as re-
lations, especially since complex, n-ary and multi-verb relations,
could be expressed in several different ways in the text. Also,
the complexity of the templates cannot be increased indefinitely as
the instances in the training data that could support such templates
would become sparser. NESTIE uses a multi-stage solution:

a) construct a seed set of facts with little or no nesting,
b) bootstrap sentences describing the seed facts and learn extraction

patterns,
c) extract tuples from unseen sentences using learned patterns, and

link extracted tuples to capture any missing information.

3.1 Constructing Seed Set
We first write a set of 13 templates, each encoding a sub-tree

of the dependency parse connecting relation phrases and argument
phrases. A subset of these templates is shown in Figure 5. In-
tuitively, we want these templates to capture the simple, common
sentence constructions. Since the tuples extracted using these tem-
plates would form the basis of training, these templates and tu-
ples must be clean and precise. The set of hypotheses in a textual
entailment dataset typically exhibit these desirable properties for
constructing seed set of facts for bootstrapping. The hypotheses
are simple sentence constructions; their dependency parses having
similar structures. We iteratively create templates until at least one
tuple could be extracted from each hypothesis. We generate a seed
set of facts by matching the templates against the hypotheses.

Using the seed set of tuples, we can learn the different ways of
expressing them in complex sentence constructions by referring to
the statements entailing the hypotheses. While a statement and hy-
pothesis often share words, there is a class of words (e.g., prepo-
sitions, a subset of adverbs, determiners, verbs etc.) that do not
modify the meaning of the hypothesis or the statement. We ignore
such words while constructing the seed set.

Example 1. Consider a statement-hypothesis pair,
Statement: A few years later in 1638, some Swedish settlers estab-
lished the first permanent settlement in Delaware.
Hypothesis: Delaware colony was established by Swedish settlers.
The hypothesis is entailed in the statement. The seed templates
extract the following tuples from the hypothesis: 〈Swedish settlers;
established; Delaware colony〉.

3

Example: Delaware	was	se.led	by	Swedes.	=>	<Delaware;	se.led	by;	Swedes>

Example: Fallujah	is	an	Iraqi	city.	=>	<Fallujah;	be;	city>

Example: Barham	Salih	is	president	of	Iraq.	=>	<Salih;	is;	president	of	Iraq>

arg1 rel arg2
nsubjpass nmod:agent

arg1 arg2 rel
nsubj cop

arg1 arg2 rel
nsubj

cop

arg3

rel2	=	nmod(?!:agent).*

T:	<arg1;	rel	by;	arg2>

T:	<arg1;	be;	arg2>

T:	<arg1;	be;	arg2	rel2	arg3>

Figure 5: Seed templates and corresponding representation.

3.2 Extraction Pattern Learning
We next have to learn the various syntactic patterns that can en-

code the same information as the seed patterns and hence can be
mapped to the same representation. We extend the bootstrapping
techniques designed for binary-relations [20] to handle n-ary and
complex relations. Our seed templates include patterns and corre-
sponding representations for n-ary, complex relations (see Figure
5). This allows us to learn dependency parse-tree patterns connect-
ing all the argument and relation phrases in a seed template. In-
stead of learning different ways of encoding two arguments and a
relation in a tuple, we learn how all different components in a tem-
plate might be expressed. This achieves higher coverage of context
for the facts and prevents the arguments/relations from being over-
specified and/or uninformative. To mitigate sparsity while boot-
strapping, we ignore the implicit relations (e.g., nominal modifier)
that can be deduced from the dependency parse. This allows to
learn templates that map paraphrases such as ‘Mary gave John a
car’ and ‘Mary gave a car to John’ to the same representation.

Specifically, NESTIE learns relation-independent, dependency-
parse tree patterns for the nest-tuple representations using the set
of (statement-tuples) pairs as training data. We use the Stanford
dependency parser [11] to parse a statement and identify the path
connecting the words of the corresponding tuple. If such a path ex-
ists, we retain the syntactic constraints on nodes and edges in the
path and ignore the surface forms of nodes in the path. This helps
generalize the learned patterns to unseen relations and arguments.
In this manner, NESTIE could learn 183 templates from the 13 seed
templates. Figure 6 shows a subset of these patterns.

Example 2. Consider the dependency sub-trees of the statement
and hypothesis from Example 1,

Statement: settlers
nsubj←− established

dobj−→ settlementnmod:in−→ Delaware
Hypothesis: Delaware

nsubjpass←− established
agent−→ settlers

A seed extraction pattern maps the parse-tree of the hypothesis to
the representation, 〈arg2; rel; arg1〉, returning tuple, 〈settlers; es-
tablished; Delaware〉. With bootstrapping, the extraction pattern
from the statement is mapped to the same representation.

3.3 Fact Extraction
Once the extraction patterns are learned, we use these patterns

to extract nest-tuples from unseen sentences. We first parse a new
sentence and match the patterns against the parse tree of the sen-
tence. As the patterns only capture the heads of the arguments and
relations, we expand the extracted argument and relation phrases
to increase the coverage of context as in the original sentence (e.g.
Swedish for the argument settlers). We refer to the parse-tree and
expand the arguments on nmod, amod, compound, nummod, det,
neg edges. We expand the relations on advmod, neg, aux, auxpass,

arg2 rel arg2
nsubj dobj T:	<arg1;	rel	by;	arg2>

T:	<arg1;	be;	arg2>

T:	<arg1;	be;	arg2	rel2	arg3>

arg2	|	NN* arg1	|	NN*
appos

arg1slot1 arg2	|	JJ

ccomp

arg3
nsubj nsubj

Figure 6: Syntactic Patterns learned using bootstrapping.

cop, nmod edges. Only the dependency edges not captured in the
pattern are considered for expansion. Also, the order of words from
the original sentence is retained in the argument phrases.

The context of extracted tuples could include condition, attribu-
tion, belief, order, reason and more. Since it is not possible to gen-
erate or learn patterns that can express complex facts as a whole,
we link the various tuples from the previous step to generate nest-
tuples that are complete and closer in meaning to the original sen-
tence. We use the following rules to link the tuples.
• The relation of tuple T1 has a dependency edge to the relation of

tuple T2.
Consider tuples, T1: 〈Native Americans; inhabited; Delaware〉 and
T2: 〈Swedish settlers; established, colonies〉. Using dependency
edge nmod:before, we construct a nest-tuple 〈T1; before; T2〉.
• Tuple T1 is argument in tuple T2.
Given tuples, T1: 〈Chinese; invented; metal currency〉 and T2:
〈Historians; believe;φ〉), we update T2 to 〈Historians; believe;T1〉.
• In a nested representation with multiple nest-tuples, a nest-tuple

is replaced with a more descriptive tuple.
These rules are based on common sentence constructions, where

ccomp edge indicates a clausal complement, an advcl edge indi-
cates a conditional and a nmod edge indiciates a relation modifier.
For conditionals and nominal modifiers, a new tuple is constructed
with source and target tuples as argument based on rule 1. For
clausal complements, the empty argument in the source tuple is up-
dated with the target tuple based on rule 2.

4. QUERYING OPEN KB
While a real-world fact has a unique representation in a curated

KB, it can have diverse representations in an open KB. Querying
amid such heterogeneity in fact representations in open KBs can
often be challenging. For instance, finding “settlers of Delaware”
from the tuples in Figure 7 will require a complicated query con-
taining multiple UNION operators.
SELECT ?x WHERE {

{?x ‘settled’ ‘shores of Delaware’.} UNION
{‘Delaware’ ‘was settled by’ ?x.}

}
The higher the heterogeneity of the KB, the greater the number

of semantically equivalent structures a query has to cover. For in-
stance, the query patterns will be far more complex for “religious
groups which settled around a river” or “religious groups which
settled around a river in 1638”. Formulating such complex query
patterns is challenging from the perspective of both the user and
the system. Traditionally, heterogeneity in curated KB is handled
by expanding the query using query patterns and transformations
which are mined offline [30, 27]. This can be impractical for com-
plex queries and even more heterogeneous open KBs.

Since arguments and relations in tuples are simply strings, find-
ing matches for query components is relatively easier in an open
KB. For instance, a simple keyword search [22, 18] can help find

4

NL	Query:	Which	religious	group	se/led	near	a	river	in	1638?

Finns

se/led

on	the	shores	of	Delaware	in	1638

Delaware

was	se/led	by

the	Swedes

Finns

is-a

religious	group

1638

Delaware

is-a

river

Swedes

are

religious	ethnic	group Delaware

is-a

river

a)

b)
in

Figure 7: Heterogeneity in open KBs makes it difficult to access
them via pattern matching.

matches for ‘settle’, ‘river’, ‘religious group’, ‘in 1638’. These
matches do not have to resemble the query specification. Instead of
evaluating a query as a whole to find an answer, it is possible to find
the answer by collecting evidence for its components. In contrast
to learning patterns or transformations from training examples, this
approach does not require any offline processing or adaptation.

Embodying these ideas, we develop an online schemaless query-
ing framework, SOQ, for complex queries. These complex queries
can be represented in a DATALOG-like format and may not re-
semble the fact representation. SOQ first transforms a query to a
query graph for identifying sub-components of the query that can
be matched independently over the KB. Since the primitive oper-
ations for matching queries are keywords and string similarity, it
pre-processes the query components: remove stop words, lemma-
tize, distinguish constraint modifiers from core entities and include
semantic role information.

4.1 Evidence Gathering
Next, SOQ must gather evidence in the form of tuples that con-

tain information relevant to the various sub-components of the query.
The retrieval must be efficient since the queries are evaluated in an
online manner. Since the KB could be very large, exhaustively find-
ing relevant tuples for each sub-component is expensive. Further-
more, relevant information could also be embedded in the context
of a tuple (e.g., nest-tuple where one of head or tail arguments is
a reference to another tuple). We, therefore, construct an inverted
index that includes all search terms with corresponding tuple iden-
tifiers and use it to retrieve tuples for a query based on the terms
mentioned in the query and the tuples. We only retain top-50 rel-
evant tuples due to the size of the KB. This simple approach can
quickly find pieces of evidence encoded in different representations
(triple, n-tuple, nest-tuple). We further include contextual tuples of
the retrieved tuples based on their overlap with the query terms.

4.2 Evidence Aggregation
In the next step, SOQ has to aggregate the evidence for vari-

ous sub-components of the query graph G(Q). We use a simple
query optimizer that makes multiple queries to the inverted index
and joins over multiple evidence from different sub-components
and constructs support sets. For joining the evidence pieces, we
compute the join-key string similarity measured using the Leven-
shtein distance. This could return multiple support sets Ci(Q) for
the query Q. While multiple support sets could share the same tu-
ple or even the same answer, but each support set contains a unique
set of tuples as evidence. To avoid noise and computation over-
head, we further prune the support sets based on the number of
query components matched such as the number of relations and ar-
guments that contain the query terms.

4.2.1 Answer Extraction
Since the evidence gathering does not make any assumptions

about the structure of the tuples, a support set Ci and query graph
Gmay have different representations (as shown in Figure 8). These

?x se%le ?y 1638

Finns se%led on	the	shores	of	Delaware	in	1638 slot
agent,	religious_group verb

verb loc,	river 3me

loc,	river

?x se%le ?y 1638

Delaware se%le	by Roman	Catholics 1638
agent,	religious_groupverb

verb loc,	river 3me

loc,	river
in

3me

slot

a)

b)

religious_group

religious_group

Figure 8: Alignment-based approach to extract answers from
heterogeneous tuple representations

representational mismatches must be handled to infer an answer ar-
gument. To find the argument in support set C that corresponds to
query focus ?xQ in G, we need to find an optimal alignment of
components in G to items in C. This can be modeled as a maxi-
mum matching problem on a weighted bipartite graph. String lit-
erals and relational edges f ∈ G constitute one type of nodes, and
items c ∈ C the other. No constraints are enforced on the align-
ment to accommodate mismatches i.e. no specific (fi, cj) pair is
assumed to always align. A (fi, cj) pair is likely to align if:
• fi and cj are surface-form variations (‘settle’ vs. ‘settle by’).
• fi and cj have same semantic role label (‘Delaware’ has the same

semantic role in the two different expressions)
• fi and cj are synonymous or semantically similar (‘assassinate’

vs. ‘shot by’).
The weight on an edge e(fi, cj) is given by a function f() over
these indicators. The function f() could simply be set to compute
the average, assigning equal weight to each type of similarity. It
can also be tuned for optimal performance. For example, we could
simply use weights for the different scoring functions as features
and train a linear ranker on a query-answer dataset. We can then
find an optimal alignment using the Hungarian algorithm and in-
clude the argument a aligning to ?xQ in the answer set, A.

4.2.2 Consolidation and Ranking
The answer set A will usually contain repeats: the same answer

obtained with different support for its sub-components. We consol-
idate A using a set of features extracted from evidence gathering
(e.g., number of components, relevance score of tuples, rank of
retrieved tuple, extractor confidence) and answer extraction (e.g.,
alignment score, word count, average IDF of words). For each
unique answer, we take the best value for each feature across the
feature representations [5] and consolidateA. We score the consol-
idated answers using a log-linear model. We train the model using
stochastic gradient descent on a set of query-answer pairs.

4.3 Front-End
SOQ takes as input DATALOG-like queries, which are represented

as query graphs. While the user can always write these queries di-
rectly, they can also be obtained by parsing a query in natural lan-
guage or in any other structured format (e.g. SPARQL).

4.3.1 Natural Language Parsing
We provide a light-weight parser for translating NL query to

query graphs. A widely used approach is to parse the NLQ into
a syntactic dependency representation. A query skeleton is then
generated depending upon the target data format [19, 32]. We build
upon these ideas to generate query graph for a NLQ with one dif-
ference: the relation-argument structure of the query graph is not

5

biased towards any specific knowledge model. This is because the
query graph has to be evaluated over a heterogeneous KB. How-
ever, the task is simplified because instead of precisely identifying
query components, we only have to identify the sub-components.
We first construct a dependency tree for the NLQ using NLP4J. A
node in the tree is a word/phrase in the NLQ while an edge is a
dependency relationship between two nodes. We then identify var-
ious components of the query graph from the parse tree, namely
relation name, head and tail arguments and constraints.

4.3.2 Paraphrasing
Users can formulate queries using informal, casual wordings and

expressions. NLQs having significantly different vocabulary than
the KB can result in low recall of support sets. NLQ, therefore,
must be paraphrased so they use vocabulary similar to that of the
KB tuples. There are several works that study paraphrasing in
relation to querying KBs: template-based paraphrasing, semantic
parsers for curated KBs, paraphrases for neural QA models.

In this work, we demonstrate that a simple template-based para-
phrasing technique to rewrite natural language queries can signifi-
cantly boost the performance of a natural language end-point. We
refer to the WIKIANSWERS paraphrase templates dataset [15, 14]
and rewrite the NLQ using paraphrase operators. Each paraphrase
operator comprises of source and target templates, such as:
What disease killed ?a? → What did ?a die of?
where ?a captures some argument. To rewrite complex NLQ using
such simple templates, we drop adverbial and prepositional modi-
fiers in the NLQ when matching templates. We consider the top-
k paraphrases based on the PMI score of operators and language
model scores of the paraphrases. Each paraphrased NLQ is then
translated and evaluated against the KB for answers.

5. OVERALL SYSTEM
An open KB-QA system can answer a broad set of user-issued

complex queries provided the KB preserves the richness of the tex-
tual data sources. Since natural language has great variation, no
single structure can be capable of representing all of the rich varia-
tions. In relational databases, and in RDF stores, it is commonplace
to have a single fact partitioned into a set of tuples, which can be
joined together to obtain the complete fact. Even if a representation
for a tuple is simple, the information is enriched with connections
between tuples, and we can, therefore, represent the potentially
complex information in a natural language sentence with a set of
interconnected tuples. Based on this idea, our open-information
extractor NESTIE, captures the richness of NL text using a set of
interconnected nest-tuples and equips a KB-QA system with the
necessary background knowledge to answer complex queries.

Even though rich, open knowledge bases, are naturally more het-
erogeneous than their carefully curated counterparts. There is a
long line of work on curated KB-QA systems that focus on under-
standing NL queries in terms of a well-defined schema of the KB.
The major challenge for these systems is to learn to translate the
NL queries into exact database queries, using templates or com-
plex query transformations. With open KBs, the focus has shifted
to accommodate different ways in which the query components
could be expressed across facts in the KB. The querying modali-
ties for open KBs, therefore, have to deviate from the conventional
query mechanisms where the database query (such as SPARQL)
is issued against the KB and tuples that match the patterns speci-
fied in the query are retrieved. With heterogeneous fact represen-
tations, it is not possible to enumerate and expand different ways
in which query components could be captured in the tuple facts.
Query execution, thus, needs to follow a retrieval-based approach

to gather evidence to answer a query and then compute an answer
from the collected evidence. Based on this idea, our schemaless,
online querying framework, SOQ, helps answer complex queries
when the schema of the underlying KB is not known in advance.

6. EXPERIMENTS
We evaluate the effectiveness of techniques we proposed for de-

signing an open KB-QA system for answering complex queries.
First, we demonstrate that NESTIE can convert an NL sentence into
a set of tuples that capture the meaning of the sentence without
losing granularity of information captured. Second, we demon-
strate the SOQ can answer complex, multi-constraint queries with
no prior knowledge of the schema or structure of facts in the KB.

6.1 NestIE
We used two datasets released by [12] in our experiments: 200

random sentences from Wikipedia, and 200 random sentences from
New York Times (NYT). We compared NESTIE against three OPEN-
IE systems: REVERB, OLLIE and CLAUSIE. Since the source code
for each of the extractors was available, we independently ran the
extractors on the two datasets. For fair comparison, we configured
the extractors to generate triple facts. Two CS graduate students
labeled each triple for correctness (0 or 1) and minimality (0 or 1).
For each sentence, they label the set of triples for informativeness
(0-5) based on the coverage of information in the sentence.

The results of our experimental study are summarized in Ta-
ble 2 which shows the number of correct and minimal triples, as
well as the total number of triples for each extractor and dataset.
We found moderate inter-annotator agreement: 0.59 on correct-
ness and 0.53 on minimality for both the datasets. As can be seen,
NESTIE produced many more triples and more informative triples
than other systems. There seems to be a trade-off between infor-
mativeness and correctness (which are akin to recall and preci-
sion, respectively). CLAUSIE achieves results closest to ours. How-
ever, the nested representation and tuple-linking used by NESTIE
produce substantially more (1.7-1.8 times more) minimal triples
than CLAUSIE, which generates triples from the constituents of the
clause. Learning non-verb mediated extraction patterns and tuple-
linking also increase the syntactic scope of relation expressions and
context. This is also reflected in the average informativeness score
of the triples. NESTIE achieves 1.1-1.9 times higher informative-
ness score than other systems.

We believe that nested representation directly improves minimal-
ity, independent of other aspects of extractor design. To explore this
idea, we analyze the triples of OLLIE that are labeled correct but not
minimal and find triples that can be made minimal and informative
with a nested representation. We found 73.75% of the non-minimal
correct triples could further be reduced, improving the minimality
score of OLLIE by 17.65%.

6.2 SOQ
To demonstrate the effectiveness of SOQ on querying heteroge-

neous fact representations, we used several well-known open KBs.
(1) OPEN-IE [14] is constructed using a family of open extractors
that extract binary relationships. NELL [9] is a relatively small
open KB with much fewer relation phrases. (3) PROBASE [23] is
an open KB with instances of only is-a relations. (4) nokb [29] is
an open KB containing n-tuple facts for higher-order relationships.
(5) NESTKB [7] is an open KB containing nest-tuple facts. We
compared SOQ against two querying mechanisms for open KBs,
OQA [14] and TAQA [29]. OQA assumes the queries and KB facts
are triples and evaluates queries via pattern matching. TAQA as-
sumes queries and KB facts are n-tuples and evaluates queries via

6

Dataset REVERB OLLIE CLAUSIE NESTIE

NYT
Informativeness 1.437/5 2.09/5 2.32/5 2.762/5
Correct 187/275 (0.680) 359/529 (0.678) 527/882 (0.597) 469/914 (0.513)
Minimal 161/187 (0.861) 238/359 (0.663) 199/527 (0.377) 355/469 (0.757)

Wikipedia
Informativeness 1.63/5 2.267/5 2.432/5 2.602/5
Correct 194/258 (0.752) 336/582 (0.577) 453/769 (0.589) 415/827 (0.501)
Minimal 171/194 (0.881) 256/336 (0.761) 214/453 (0.472) 362/415 (0.872)

Table 2: Informativeness and number of correct and minimal tuple-assertions as fraction of total number of assertions.

Systems COMPQ-T COMPQ-M WEBQ

Precision Recall F1 Precision Recall F1 Precision Recall F1

SOQ 55.9% 47.0% 51.1% 31.5% 21.5% 25.6% 38.3% 26.0% 31.0%
OQA 26.3% 1.6% 3.1% 25.6% 2.7% 4.9% 28.4% 16.7% 21.0%
TAQA (No relaxation) 27.7% 27.7% 27.7% – 32.3% 32.3% 32.3%
TAQA 39.3% 39.3% 39.3% – 35.6% 35.6% 35.6%

Table 3: Performance of SOQ compared to other methods for querying open knowledge bases

relaxed-pattern matching. We report the precision, recall and F1

scores of answers retrieved by each method.
Table 3 shows the performance of SOQ, and the two other base-

line methods. In comparison to OQA, SOQ consistently achieves
higher precision and recall on complex queries. OQA lacks ex-
pressivity in the query model, in addition to restrictive pattern-
matching. This becomes a bottleneck for a complex query. Even
when it is provided a background knowledge source with higher
expressiveness (e.g. NOKB and NESTKB), its querying mechanism
cannot utilize the additional semantic information. In comparison
to TAQA, SOQ achieves higher precision and recall on complex
queries. Even though TAQA uses an expressive query language (n-
tuple), its restrictive querying cannot extract answers from hetero-
geneous tuples. It enforces certain structural constraints and does
not take into account evidence embedded in the context of tuples.
These constraints limit recall: 27.7% with no relaxed queries. SOQ
does not enforce such structural constraints, enabling it to derive
correct answers from tuples that are lexically and structurally dif-
ferent from the query. In the WEBQ query set, most of the queries
are simple, single-relation queries answerable from Freebase. Thus,
all methods can successfully formulate structured queries for these
queries. While the restrictive representation and querying in OQA
achieves reasonable precision, more flexible execution as in TAQA
and SOQ achieves higher precision.

7. RELATED WORK
There is ample work on querying knowledge bases (KBs), par-

ticularly curated KBs that can be modeled as RDF databases. The
input is a structured query that is often presented as a query graph
or pattern (e.g., [4, 3, 16], which is evaluated against the KB by ex-
act matching. These methods emphasize efficiency and scale, and
focus on fixed schemas and structures. As a result, a user must
know the structure and vocabulary of the data being queried, and
the exact values of the constants and data types. To relax such con-
straints of schema and structure, approximate matching for graph
pattern queries [24, 30, 17, 31] and keyword queries [25, 26] have

been adopted. Learning equivalent structural patterns and transfor-
mations offline is not possible for even more heterogeneous open
KBs that do not have canonicalized entities and relations.

Natural language interfaces to access information in KBs has
also been widely studied, including template-based methods [21,
1, 10] and semantic parsers [6, 28, 13]. They transform a NL query
into a structured query by employing templates or logical forms.
They focus on learning how to map query phrases to elements in the
KB and usually demand query-answer pairs as the training dataset,
which makes them hard to scale. Furthermore, as queries become
complex, deriving reliable translations becomes more challenging.

There is little work on querying open KBs due to their flexible
schema and open vocabulary. Open KB-QA systems rewrite and
reformulate the query, in addition to a more relaxed semantics for
matching query components [15, 14, 29]. Reformulating queries
becomes infeasible as queries become complex. However, answers
for complex queries can typically be found by decomposing the
query. To the best of our knowledge, we are the first to demonstrate
how such a formalism can be adopted to query heterogeneous open
KBs in a completely online manner.

8. CONCLUSION
OPEN-IE has revolutionized how NL text is structured with lit-

tle/no human effort in structured open KBs. Yet, the state of the
art in open KB-QA involves very simple questions from a DB per-
spective. Evaluating more complex queries efficiently needs the
extraction process to preserve the rich information in NL text and
the querying process to adapt to the flexible schema of the open
KB. In this work, we have developed NESTIE and SOQ to accom-
plish this goal.

9. REFERENCES
[1] A. Abujabal, M. Yahya, M. Riedewald, and G. Weikum.

Automated template generation for question answering over
knowledge graphs. In Proc. WWW ’17, pages 1191–1200.
ACM, 2017.

7

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak,
and Z. Ives. Dbpedia: A nucleus for a web of open data. The
semantic web, pages 722–735, 2007.

[3] P. B. Baeza. Querying graph databases. In Proc. PODS ’13,
pages 175–188. ACM, 2013.

[4] P. Barceló, L. Libkin, and J. L. Reutter. Querying graph
patterns. In Proc. SIGMOD ’11, pages 199–210. ACM,
ACM, 2011.

[5] P. Baudis and J. Sedivý. Modeling of the question answering
task in the yodaqa system. In Proc. CLEF ’15, volume 9283,
pages 222–228. Springer, 2015.

[6] J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic
parsing on freebase from question-answer pairs. In Proc.
EMNLP ’13, pages 1533–1544. ACL, 2013.

[7] N. Bhutani, H. V. Jagadish, and D. R. Radev. Nested
propositions in open information extraction. In J. Su,
X. Carreras, and K. Duh, editors, Proc. EMNLP ’2016, pages
55–64. ACL, 2016.

[8] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for
structuring human knowledge. In Proc. SIGMOD ’2008,
pages 1247–1250. AcM, 2008.

[9] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr.,
and T. M. Mitchell. Toward an architecture for never-ending
language learning. In M. Fox and D. Poole, editors, Proc.
AAAI ’2010. AAAI Press, 2010.

[10] W. Cui, Y. Xiao, H. Wang, Y. Song, S.-w. Hwang, and
W. Wang. Kbqa: learning question answering over qa
corpora and knowledge bases. Proc. VLDB’17,
10(5):565–576, 2017.

[11] M.-C. De Marneffe, B. MacCartney, C. D. Manning, et al.
Generating typed dependency parses from phrase structure
parses. In Proc. LREC ’2006, volume 6, pages 449–454,
2006.

[12] L. Del Corro and R. Gemulla. Clausie: clause-based open
information extraction. In Proc. IW3C2 ’2013, pages
355–366, 2013.

[13] L. Dong, J. Mallinson, S. Reddy, and M. Lapata. Learning to
paraphrase for question answering. pages 875–886, 2017.

[14] A. Fader, L. Zettlemoyer, and O. Etzioni. Open question
answering over curated and extracted knowledge bases. In
S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang, and
R. Ghani, editors, Proc. SIGKDD ’ 2014, pages 1156–1165.
ACM, 2014.

[15] A. Fader, L. S. Zettlemoyer, and O. Etzioni.
Paraphrase-driven learning for open question answering. In
Proc. ACL 2013, pages 1608–1618. ACL, 2013.

[16] J. Huang, D. J. Abadi, and K. Ren. Scalable SPARQL
querying of large RDF graphs. PVLDB, 4(11):1123–1134,
2011.

[17] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and
G. Weikum. NAGA: searching and ranking knowledge. In
G. Alonso, J. A. Blakeley, and A. L. P. Chen, editors, Proc.
ICDE’08, pages 953–962. IEEE, 2008.

[18] W. Le, F. Li, A. Kementsietsidis, and S. Duan. Scalable
keyword search on large RDF data. IEEE Trans. Knowl.
Data Eng., 26(11):2774–2788, 2014.

[19] F. Li and H. Jagadish. Constructing an interactive natural
language interface for relational databases. PVLDB,
8(1):73–84, 2014.

[20] M. Schmitz, R. Bart, S. Soderland, O. Etzioni, et al. Open

language learning for information extraction. In Proc.
EMNLP-CoNLL ’2012, pages 523–534, 2012.

[21] C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo,
D. Gerber, and P. Cimiano. Template-based question
answering over rdf data. In Proc. WWW ’12, pages 639–648.
ACM, ACM, 2012.

[22] H. Wang and C. C. Aggarwal. A survey of algorithms for
keyword search on graph data. In Managing and Mining
Graph Data, pages 249–273. Springer, 2010.

[23] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: a
probabilistic taxonomy for text understanding. In Proc.
SIGMOD ’2012, pages 481–492. ACM, 2012.

[24] Y. Wu, S. Yang, and X. Yan. Ontology-based subgraph
querying. In Proc. ICDE ’13, pages 697–708. IEEE, IEEE,
2013.

[25] M. Yahya, D. Barbosa, K. Berberich, Q. Wang, and
G. Weikum. Relationship queries on extended knowledge
graphs. In Proc. WSDM ’16, pages 605–614, 2016.

[26] M. Yahya, K. Berberich, M. Ramanath, and G. Weikum.
Exploratory querying of extended knowledge graphs. Proc.
VLDB ’14, 9(13):1521–1524, 2016.

[27] S. Yang, Y. Wu, H. Sun, and X. Yan. Schemaless and
structureless graph querying. Proc. VLDB ’14, 7(7):565–576,
2014.

[28] X. Yao and B. Van Durme. Information extraction over
structured data: Question answering with freebase. In Proc.
ACL ’14, pages 956–966. ACL, 2014.

[29] P. Yin, N. Duan, B. Kao, J. Bao, and M. Zhou. Answering
questions with complex semantic constraints on open
knowledge bases. In Proc. CIKM ’2015, pages 1301–1310.
ACM, ACM, 2015.

[30] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao.
Semantic sparql similarity search over rdf knowledge graphs.
Proc. VLDB ’16, 9(11):840–851, 2016.

[31] L. Zou, L. Chen, and M. T. Özsu. Distance-join: Pattern
match query in a large graph database. Proceedings of the
VLDB Endowment, 2(1):886–897, 2009.

[32] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao.
Natural language question answering over rdf: a graph data
driven approach. In Proc. SIGMOD ’2014, pages 313–324.
ACM, ACM, 2014.

8

