
Disambiguating Queries in Conversational Interfaces

Christopher Baik, Zhongjun Jin, Michael Cafarella
University of Michigan
Ann Arbor, MI, USA

{cjbaik, markjin, michjc}@umich.edu

ABSTRACT
Enabling conversational access to relational databases is a
challenging task and often requires the disambiguation of
a user’s natural language query by selecting the target in-
terpretation from among many candidate structured query
interpretations. Performing this disambiguation on a con-
versational interface is difficult as such interfaces are often
implemented on devices with small screens or no screen at
all, requiring system responses to be succinct and to occupy
little screen real estate. We propose the distinguishing tuple
interaction model to help the user disambiguate candidate
queries via a conversational interface and provide a formal
problem definition. We introduce a general solution strategy
involving a greedy algorithm with branch-and-bound and
heuristic variants, and demonstrate in selected experiments
that our algorithms can reduce the number of interactions
with the user over baseline approaches.

PVLDB Reference Format:
Christopher Baik, Zhongjun Jin, and Michael Cafarella. Disam-
biguating Queries in Conversational Interfaces. PVLDB, 13(xxx):
xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
With the rise of virtual assistants such as Google Assis-

tant, Apple’s Siri, and Amazon’s Alexa, voice search is in-
creasingly becoming a popular medium for users to inter-
act with devices. A study of 1400 smartphone users per-
formed by Google in 2014 found that 55% of teens and 41%
of adults use voice search at least once a day1, while Com-
Score estimates that by 2020, 50% of all searches will be
voice searches2.

1https://www.prnewswire.com/news-releases/teens-use-
voice-search-most-even-in-bathroom-googles-mobile-voice-
study-finds-279106351.html
2https://www.campaignlive.co.uk/article/just-say-it-
future-search-voice-personal-digital-assistants/1392459

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

At the same time, relational databases are far and away
the most popular type of database in use today3, given their
reliability and ability to process transactions quickly. The
times seem to naturally call for an integration of the two
technologies, where a user would be able to invoke a “skill”
on Alexa or “action” on Google Assistant to issue queries
on a large relational database.

Unfortunately, enabling such an interaction is an open
challenge, due to the difficulty of natural language under-
standing and “bridging the semantic gap” [1, 6] between
a user’s description of an information need and the formal
SQL query in the context of a specific database schema.
As a result, natural language interfaces to databases typi-
cally generate multiple candidate queries (i.e. SQL interpre-
tations), as demonstrated in the following example.

Example 1. Sharon has been a car parts dealer in the
USA for 15 years and has access to a relational database
of part sales that a consulting firm created for her. After
hearing recent news that tariffs would be enforced on goods
flowing into and out of China, she wants to know which of
her largest customers would be affected to inform them.

Unfortunately, she has little knowledge of SQL or of the
database schema she is querying. As such, she uses a natural
language interface that was set up for her on the database
to issue the query: “What are the names and addresses of
those in China who bought more than $10,000 from us?”

Internally, the natural language interface tries its best to
resolve the ambiguities in Sharon’s query. In particular,
“those in China” can refer to either customers or suppli-
ers, and the amount “$10,000” can refer to various price
fields. A few sample candidate queries are:

1. SELECT s.name, s.address

FROM supplier s

JOIN partsupp ps ON ps.sid = s.sid

JOIN part p ON p.pid = ps.pid

WHERE p.price > 10000

AND s.address LIKE ‘%China%’

(i.e. Select the name and address of suppliers selling
parts of more than $10,000 with an address containing
the substring ‘China’.)

2. SELECT c.name, c.address

FROM customer c JOIN nation n ON c.nid = n.nid

JOIN order o ON o.oid = c.cid

WHERE o.price > 10000 AND n.nation = ‘China’

3https://db-engines.com/en/ranking categories

1

(i.e. Select the name and address of customers in the
nation China who made orders of more than $10,000.)

3. SELECT c.name, c.address

FROM customer c JOIN nation n ON c.nid = n.nid

JOIN order o ON o.oid = c.cid

JOIN lineitem li ON o.oid = li.oid

WHERE li.price > 10000 AND n.nation = ‘China’

(i.e. Select the name and address of customers in the
nation China who made an order with a line item cost-
ing more than $10,000.)

As demonstrated above, natural language queries often
contain ambiguity that are difficult even for humans to in-
terpret. Some viable approaches to disambiguation include
asking some clarifying questions (“Were you referring to
customers or suppliers?”), applying domain knowledge, or
executing some queries and validating results to select the
appropriate query interpretation.

We propose the distinguishing tuple interaction model to
facilitate disambiguation of natural language queries in the
context of conversational interfaces, which are often imple-
mented on devices with small screens or no screen at all.

Interaction Model — While non-technical users may
lack knowledge of SQL or the schema, they often have do-
main knowledge that can help disambiguate candidate queries
(CQs). One specific means by which a system can elicit this
knowledge is to display examples from the result sets of CQs
to the user, who can provide feedback on whether those ex-
amples should or should not belong in the result set of their
desired query. We call this the distinguishing tuple interac-
tion model, and aim to conserve user effort by distinguishing
multiple CQs at once given user feedback on the suggested
tuple. Distinguishing tuples can be used exclusively or in
conjunction with orthogonal techniques such as natural lan-
guage explanations [3] to clarify the user’s intent.

In Example 1, the system could present the example tuple
("USA Car Parts", "Chinatown, NY") produced by the first
CQ (and also possibly by other undisplayed CQs), and ask
Sharon whether her desired query should produce that tu-
ple: To clarify, one possible query includes “USA Car Parts”
in “Chinatown, NY”. Is this consistent with what you were
looking for?. Sharon can then reply, “No,” eliminating any
CQs that produce that tuple. Conversely, if she replied
“Yes,” then only CQs producing the tuple would be pre-
served. She might also say, “I’m not sure,” in which case
alternate tuples could be provided to Sharon.

The distinguishing tuple interaction model has several
benefits. First, providing feedback on tuples requires no
user expertise in SQL or the database schema. Second, a
tuple can precisely distinguish two queries given a spe-
cific database instance. Finally, both tuples and tuple feed-
back require little screen real estate and can easily be
communicated via a conversational interface.

Technical Challenges — Given our interaction model,
we want to save the user time and effort by arriving at their
target query in as few iterations as possible. This entails
selecting the shortest sequence of tuples that will narrow the
CQ set to the target query. As we show later, this problem
is NP-hard.

In addition, since the suggested tuples can only be re-
trieved by executing CQs on the database, this process may
require the user to wait a long time for CQs to execute, de-
pending on the size and schema of the database, the number

of CQs, and the number of tuples returned per CQ. We aim
to reduce the time to suggest a tuple to the user by intelli-
gently avoiding a full execution of all CQs.

In summary, our technical challenges are to: (1) arrive at
the target query with a minimal number of iterations/tuples,
and (2) perform each iteration in interactive time.

Our Approach — We aim to minimize the number of
tuples presented to the user by constructing an optimal split
tree, which is a flowchart of potential tuples the system
should present to the user depending on the user’s feed-
back. We develop a greedy algorithm for constructing such
a split tree, as well as branch-and-bound and heuristic-based
variants of the approach, which improve on the runtime of
the vanilla greedy algorithm.

Contributions — We offer the following contributions:

• We introduce the distinguishing tuple interaction model
as a means of disambiguating natural language queries
in a conversational interface. We provide a formal def-
inition of the MinDistTuples problem of minimizing
user effort in the interaction model.

• We introduce a general solution strategy involving a
greedy algorithm with branch-and-bound and heuristic
variants.

• We demonstrate in selected experiments that our algo-
rithms can reduce the number of interactions with the
user over baseline approaches.

2. OVERVIEW
In this section, we provide an overview of the distinguish-

ing tuple interaction model and a formal problem definition.

2.1 Interaction Model
The user begins by providing a natural language specifi-

cation of their target query q̂, which the interface translates
to a set of CQs. The system selects a tuple from the re-
sult sets of the CQs, and presents it to the user. The user
can either accept, reject, or ignore the presented tuple. An
accepted tuple is expected by the user in the output of q̂,
while a rejected tuple is expected not to be in the output
of q̂. If a user ignores a tuple, then an alternate tuple is
provided to the user. The system prunes the set of CQs
according to the user’s feedback, then again returns a tuple
from the remaining CQs. This process iteratively continues
until the interaction allows the system to arrive at a single
CQ satisfying all of the user’s feedback.

2.2 Problem Definition
In this section, we introduce some necessary concepts,

then formalize our problem definition. We assume that all
concepts and definitions provided are in the context of a
fixed existing database.

2.2.1 Concepts
First, we define candidate queries:

Definition 1. A candidate query (CQ) q is a conjunc-
tive query with a weight w(q) > 0 producing a result set of
tuples R(q).

The weight w(q) of a CQ models the confidence from a
natural language interface that a certain CQ is the target

2

query. We note that the w(q) value is not required to reflect
a probability distribution and our problem setting does not
require that w(q) values sum to 1.

We denote a set of CQs by Q = {q1, . . . , qn} and extend
the definition of result sets and weights to CQ sets such that
R(Q) is defined as the union of all result sets of CQs in Q
and w(Q) is the sum of the weights of all the CQs. Qt

> is
the subset of CQs in Q that produce the tuple t in their
result set and Qt

⊥ is the subset of CQs in Q that do not
produce t in their result set. We also use Qt as shorthand
for Qt

>. Finally, the domain of all possible tuples is given
by the symbol T.

2.2.2 Formal Problem
Our goal is to minimize the number of tuples presented to

the user in the distinguishing tuple interaction model. Given
our setting where the target query is unknown a priori and
can only be discovered by soliciting user feedback on tuples,
we define a distinguishing tuple set as a set of tuples which
uniquely identifies a single CQ consistent with the user’s
feedback from a set of CQs:

Definition 2. Given a CQ set Q and a user function
U : T → {>,⊥,∅}, a distinguishing tuple set is a set of
tuples S = {t1, . . . , tm} such that each tuple ti ∈ R(Q) and:

|
⋂
ti∈S

Qti
U(ti)
| = 1 (1)

In Definition 2, we model the user as a function that takes
a tuple as input and returns > (i.e. accepted tuple), ⊥ (re-
jected), or ∅ (ignored) as output. Our main problem can
now be formalized as follows:

Problem 1 (MinDistTuples). Given a set of CQs Q
and a user function U , find the smallest distinguishing tuple
set S.

We make a few assumptions in this problem formulation in
order to guarantee that a solution always exists to MinDist-
Tuples. First, we assume that the target query has a non-
empty result set. Second, we assume that the user always
provides feedback consistent with their target query. Fi-
nally, we assume that there is exactly one target query in
the set Q and that no other CQ in Q has the exact same
result set as the target query.

Unfortunately, solving this problem is non-trivial; in fact:

Theorem 1. MinDistTuples is NP-hard.

The theorem can be proved by demonstrating that the
decision problem variant of MinDistTuples is in NP and
that SetCover [4] can be reduced to it in polynomial time.
We omit the full proof for space reasons.

3. GENERAL APPROACH
In this section, we introduce our overall solution strategies

to tackle the NP-hard MinDistTuples problem of minimiz-
ing the number of tuples we present to the user.

3.1 Split Trees
We introduce the split tree to represent the space of inter-

actions in the distinguishing tuple interaction model. The
split tree is a type of flowchart that models various possi-
ble interaction paths composed of system-suggested tuples

accept reject

accept reject

t1

t2

q1
0.5

q2
0.3

q3
0.3

Figure 1: Example split tree. The bolded execution leads to
q2 as the target query.

and user feedback (i.e. accepting or rejecting the suggested
tuples). Formally:

Definition 3. A split tree for CQ set Q is a rooted bi-
nary tree T in which each node v has a label L(v) such that:

• Each CQ q ∈ Q has exactly one corresponding leaf
node v` ∈ T labeled with q: L(v`) = q and each inter-
nal node vi ∈ T is labeled with a tuple: L(vi) ∈ R(Q).

• Any CQ q in the left subtree of an internal node vi
produces the tuple L(vi) in its result set R(q), while
any CQ in the right subtree does not produce L(vi).

As shown in Figure 1, a single instance of the distinguish-
ing tuple interaction model can be mapped to a path from
the root to the leaf labeled with the target query, where at
each internal node, the left edge is taken if the user accepts
the tuple, and the right edge if the user rejects it. While not
shown in the figure, if the user ignores the tuple, we simply
remove it from the pool of candidate tuples and present an-
other tuple. If we enumerated all root-to-leaf paths from all
possible split trees, it would be equivalent to enumerating
the entire search space of candidate distinguishing tuple sets
for MinDistTuples.

3.1.1 Optimal Split Tree
One of the reasons why MinDistTuples is difficult is

because the system has no way of knowing which CQ is the
target query apart from a trial-and-error approach of feeding
tuples to the user. We attempt to tackle this challenge by
minimizing the root-to-leaf path length for all CQs on a
single split tree.

Since the weights of CQs provide information on which
CQs are most likely to be the target query, we include this
and define the cost of a split tree as the total weighted cost:

c(T) =

n∑
i=1

liw(qi) (2)

where li is the length of the path from the root to the leaf
node labeled with qi. While other cost functions such as the
worst-case cost of any qi ∈ Q are possible alternatives, we
prefer the weighted cost because it takes into account any
information provided by the user and/or natural language
interface to prioritize examining CQs with higher weights.

Using this cost metric, our strategy is to approximate
MinDistTuples by discovering a single optimal split tree,
consequently limiting the candidate distinguishing tuple sets
to be explored to the root-to-leaf paths of this split tree:

3

Rand L1S All BB First

0

20

40

(a) Iterations for each task

Rand L1S All BB First

1

2

3

(b) System runtime (s)/iter

Figure 2: Results on the IMDB dataset.

Problem 2 (OptSplitTree). Given a set of CQs Q,
find the split tree T minimizing c(T).

While this problem is also demonstrated to be NP-hard [5],
it allows us to move toward a feasible solution strategy.

3.2 Greedy Algorithm
The space of possible split trees that can be generated

given a set of CQs is prohibitively large for most tasks,
and so we adopt the greedy approach described in [5] to
approximate the optimal split tree in an algorithm we call
GreedyAll. This greedy approach still requires a full exe-
cution of all CQs in order to select an optimal tuple, so we
additionally adopt a branch-and-bound (GreedyBB) and
heuristic-based (GreedyFirst) variants of the approach to
avoid a full execution and conserve system runtime.

4. SELECTED EXPERIMENTS
We evaluated the effectiveness of our three algorithms

with a simulated user that correctly accepted or rejected
any tuples presented to it. The input for each task was a
set of CQs with equal weight (w(q) = 1) with a single target
query. For each iteration of the task, the system selected
a tuple from the result sets of the CQs and presented it to
the user. The system iteratively eliminated CQs given the
user’s feedback until the system narrowed down the CQ set
to a single CQ, which was returned as the target query.

We used the IMDB dataset [7] which contains correspond-
ing pairs of natural language and SQL queries. We executed
the natural language queries for each task using a natural
language interface based on the design of [7] to produce a
set of candidate queries which vary in terms of selected pro-
jections, predicates, and join paths. The original annotated
SQL query was labeled as the target query for each task.

We compared our algorithms, GreedyAll (All for short),
GreedyBB (BB), and GreedyFirst (First) to a baseline
approach of randomly selecting any tuple (Rand) and to the
L1S approach from [2]. We did not compare against the
bottom-up and top-down algorithms from [2] because they
were only applicable to join predicate CQ workloads, and
also did not evaluate against L2S as it leveraged a similar
heuristic approach to L1S yet was demonstrated in their
evaluation to often be an order of magnitude slower than
L1S. We ran 5 trials for each algorithm on each task and av-
eraged the results to get a sense of the average performance.

Figure 2a displays the number of iterations of user feed-
back on tuples required to find the target query. The box-
and-whisker plots display the minimum, first quartile, me-
dian, third quartile, and maximum values over all tasks,

along with any outliers (values greater than the upper quar-
tile by at least 1.5 times the interquartile range or lesser than
the lower quartile by at least that amount) as individual
points. Notably, our three algorithms avoid the worst-case
outliers that occur with both Rand and L1S.

Figure 2b displays the mean system runtime per iteration
over all tasks. Rand has the least overhead because it re-
quires that a single random query is selected and executed
with a top-1 query. L1S also runs within 2 seconds per itera-
tion. All, and BB have comparable runtimes over 3 seconds
per iteration, while First reduces it to 2.5 seconds per it-
eration. It is important to note that the total runtime for a
task is calculated by niters(tuser + tsys), where tuser and tsys
are the average user response time and system runtime per
iteration. In practice, we expect the user response time to
be the dominant factor in total task time, and find that it is
a reasonable tradeoff for our algorithms take slightly more
system runtime than the baselines in order to significantly
reduce the total number of iterations.

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed the distinguishing tuple in-

teraction model to enable a user to disambiguate candi-
date queries in a conversational interface. We introduced a
general solution strategy involving a greedy algorithm with
branch-and-bound and heuristic variants, and demonstrated
in selected experiments that our algorithms can reduce the
number of interactions with the user over baseline approaches.
For future work, we intend to refine our algorithms to im-
prove their performance and extend our experiments to a
larger set of benchmarks.

6. REFERENCES
[1] C. Baik, H. V. Jagadish, and Y. Li. Bridging the

Semantic Gap with SQL Query Logs in Natural
Language Interfaces to Databases. arXiv e-prints, page
arXiv:1902.00031, Jan 2019.

[2] A. Bonifati, R. Ciucanu, and S. Staworko. Learning
join queries from user examples. ACM Transactions on
Database Systems (TODS), 40(4):24, 2016.

[3] D. Deutch, N. Frost, and A. Gilad. Provenance for
natural language queries. Proceedings of the VLDB
Endowment, 10(5):577–588, 2017.

[4] R. M. Karp. Reducibility among Combinatorial
Problems, pages 85–103. Springer US, Boston, MA,
1972.

[5] S. R. Kosaraju, T. M. Przytycka, and R. Borgstrom.
On an optimal split tree problem. In Workshop on
Algorithms and Data Structures, pages 157–168.
Springer, 1999.

[6] Y. Li and D. Rafiei. Natural language data
management and interfaces: Recent development and
open challenges. In Proceedings of the 2017 ACM
International Conference on Management of Data,
SIGMOD ’17, pages 1765–1770, New York, NY, USA,
2017. ACM.

[7] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig.
Sqlizer: Query synthesis from natural language.
Proceedings of the ACM on Programming Languages,
1(OOPSLA):63, 2017.

4

	Introduction
	Overview
	Interaction Model
	Problem Definition
	Concepts
	Formal Problem

	General Approach
	Split Trees
	Optimal Split Tree

	Greedy Algorithm

	Selected Experiments
	Conclusion and Future Work
	References

